Three-dimensional flow and lift characteristics of a hovering ruby-throated hummingbird.
نویسندگان
چکیده
A three-dimensional computational fluid dynamics simulation is performed for a ruby-throated hummingbird (Archilochus colubris) in hovering flight. Realistic wing kinematics are adopted in the numerical model by reconstructing the wing motion from high-speed imaging data of the bird. Lift history and the three-dimensional flow pattern around the wing in full stroke cycles are captured in the simulation. Significant asymmetry is observed for lift production within a stroke cycle. In particular, the downstroke generates about 2.5 times as much vertical force as the upstroke, a result that confirms the estimate based on the measurement of the circulation in a previous experimental study. Associated with lift production is the similar power imbalance between the two half strokes. Further analysis shows that in addition to the angle of attack, wing velocity and surface area, drag-based force and wing-wake interaction also contribute significantly to the lift asymmetry. Though the wing-wake interaction could be beneficial for lift enhancement, the isolated stroke simulation shows that this benefit is buried by other opposing effects, e.g. presence of downwash. The leading-edge vortex is stable during the downstroke but may shed during the upstroke. Finally, the full-body simulation result shows that the effects of wing-wing interaction and wing-body interaction are small.
منابع مشابه
Hummingbird hovering energetics during moult of primary flight feathers.
How does a hovering hummingbird compensate for the loss of flight feathers during moult when the mechanism of lift force generation by flapping wings is impaired? The flight performance of five individual ruby-throated hummingbirds with moulting primary flight feathers and reduced wing area was compared with that before their moult. Hummingbirds were flown in reduced air densities using normoxi...
متن کاملHovering hummingbird wing aerodynamics during the annual cycle. I. Complete wing
The diverse hummingbird family (Trochilidae) has unique adaptations for nectarivory, among which is the ability to sustain hover-feeding. As hummingbirds mainly feed while hovering, it is crucial to maintain this ability throughout the annual cycle-especially during flight-feather moult, in which wing area is reduced. To quantify the aerodynamic characteristics and flow mechanisms of a hummingb...
متن کاملNeuromuscular control of hovering wingbeat kinematics in response to distinct flight challenges in the ruby-throated hummingbird, Archilochus colubris.
While producing one of the highest sustained mass-specific power outputs of any vertebrate, hovering hummingbirds must also precisely modulate the activity of their primary flight muscles to vary wingbeat kinematics and modulate lift production. Although recent studies have begun to explore how pectoralis (the primary downstroke muscle) neuromuscular activation and wingbeat kinematics are linke...
متن کاملLimits to flight energetics of hummingbirds hovering in hypodense and hypoxic gas mixtures.
Hovering hummingbirds offer a model locomotor system for which analyses of both metabolism and flight mechanics are experimentally tractable. Because hummingbirds exhibit the highest mass-specific metabolic rates among vertebrates, maximum performance of hovering flight represents the upper limit of aerobic locomotion in vertebrates. This study evaluates the potential constraints of flight mech...
متن کاملLift production in the hovering hummingbird.
Aerodynamic theory and empirical observations of animals flying at similar Reynolds numbers (Re) predict that airflow over hummingbird wings will be dominated by a stable, attached leading edge vortex (LEV). In insects exhibiting similar kinematics, when the translational movement of the wing ceases (as at the end of the downstroke), the LEV is shed and lift production decreases until the energ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of the Royal Society, Interface
دوره 11 98 شماره
صفحات -
تاریخ انتشار 2014